Restoration in Tepee Creek: Lessons Learned and Looking Forward

Will Conley, Hydrologist Yakama Nation Fisheries Program

Klickitat / White Salmon Fisheries and Watershed Science Science Conference March 16, 2010

Outline

Background Tepee IXL Project (phase 1) Results Insights / lessons Learned Bed Material Average Gradient Materials Salvage Tepee Creek Meadows (Phase 2) Sequencing Baseline monitoring results

Location

- Klickitat River tributary
- Columbia R. basin
- south-central Washington State
- east-slope of Cascade Mountains
- 22 miles due east of Mt. Adams
- within Yakama Nation Reservation

Setting

Forested watershed (3000-4000')

- Basal geology is Grande Ronde basalt (CRB group)
- Hard parent materials and low to moderate relief = very limited bedload supply
- Contributing <u>drainage area of 8.4 square-miles</u>
- Project reach is at 2965' elevation
- Cohesive soils / banks (Aquandic Haploxeralfs)
- Prevailing soil texture is clay loam

Problem

Project reach dried-up in 4 out of 5 years preceding project implementation

Limited steelhead (ESA- "threatened") rearing (limiting) and spawning habitat

Fish stranding in ephemeral pools

 Field indicators and hydraulic modeling indicated that project reach was incised 3 to 4 feet, mostly within historic planform

Goals

Raise water table / floodplain storage

Enhance in-channel habitat conditions for rearing steelhead

Restore suitability of valley bottom for medicinal and traditional food plants

Project Team

- Will Conley YN Fisheries Program
 - Project Management - Design
 - Construction Oversight
- Mike McAlister, PE Interfluve, Inc
 - Construction Oversight - Design
- Mike Brunfelt Interfluve, Inc
 - Construction Oversight - Design

Sequencing

Implemented over two field seasons:

Fall 2006

- All riffles roughed-in
- Downstream grade control completed
- All LWD and rock material delivered to site
- Roughly half of the LWD jams completed
- Temporary erosion control measures implemented

Maximum discharge over winter 2006/2007 = 143 cfs

July 2007

- Final grading on pools and riffles
- LWD jams and floodplain LWD completed
- Revegetation and weed control completed
- Fence construction completed
- Access routes rehabilitated

Implementation

- A 140' coarsened riffle (0.03 ft/ft) was constructed at the downstream end of the reach for grade-control
- Ninety-five feet of new channel constructed
- Reconnected 135' of historic channel
- Imported gravel to raise bed elevation (~3') and reconstruct pool/riffle sequences along 1850'
- Overall reach lengthened to 1990'
- 28 LWD jams constructed along channel margins
- Numerous floodplain LWD placements constructed
- Removed 2 culverts and related fill from an abandoned cross-valley road alignment

Typical Riffle Fill and LWD: Under Construction

Typical Riffle Fill: Before & After

8/25/04

5/19/08

STA 10+60

"Immature" cross-section constructed(2007) to minimize bed shear andallow development of inset channel

11/4/08

Vegetation encroachment after one growing season

Will Conley, Yakama Nation Fisheries

5/4/09

Ineffective areas intentionally left unfilled

encourages recruitment of fines
minimizes suitability for weeds
hastens colonization by desired hydrophytes

STA 6+70 8/7/07

STA 20+90

(IXL Road Crossing – upstream end of project reach)

4/5/07

Culvert outlets backwatered to improve fish passage

Groundwater

Post-project:

- 2' 4' increase in summer/fall water table
- Less variability between and amongst wells

Residual Pool Depths

Note: because some pools were under-filled during construction, the median value for residual depths under equilibrium conditions is anticipated to be 2.0' - 2.49' Will Conley, Yakama Nation Fisheries

Steelhead Spawning

Year	Total Redds in Tepee Creek (redds/mi)	Redds in TepeeIXL Reach (redds/mi)	Redds in Tepee Cr outside of IXL reach (redds/mi)	
2004	12 (1.5)	n/a	n/a	
2005	0	n/a	n/a	
2006	0	n/a	n/a	
Project Initiation				
2007	3 (0.4)	2 (5)	1 (0.1)	
2008	2 (0.2)	0 (0)	2 (0.3)	
2009	12 (1.5)	4 (10)	8 (1.0)	

Results Summary

- Flow Duration: 23 perennial pools maintained all 3 years since construction
- Groundwater: 2 4' increase in summer water table
- High Flow Access: at bankfull or lower flows to four side channels totaling 835 lineal feet
- Pools: increased from 15 to 23 (65%); greater depths & cover
- Wetlands: ~3100 ft² of emergent wetland created
- Riparian Vegetation: Rapid recovery, particularly of salvaged plant materials
- Spawning: five steelhead redds observed
- <u>Rearing</u>: 2x 3x increase in juvenile *O. mykiss* abundance
- <u>Macroinvertebrates</u>: Rapid colonization by multiple taxa of caddisflies and mayflies

Bed Material: Pre-Project

colluvial armor; clasts >40mm mostly sub-angular bi-modal distribution; very high fines content

Bed Material: Design

Size distribution should balance:

- stability ($Q_2 = \sim 150$ cfs)

Consider:

- porosity ($Q_{base} = \sim 10 \text{ gpm}$)

Gradation Table Imported Gravel		
Percent	Diometer	
Smaller Than	(in)	
100	4.0	
84	1.6	
50	0.7	

 $D_{84} / D_{100} = 0.4$ $D_{84} / D_{16} = 8.0$ $D_{84} / D_{50} = 2.3$

Ambient passage conditions

- Temperature vs dissolved oxygen trade-offs
 - D.O. recovers faster than temperature
 - Erred on side of too porous, hence lower potential for adverse temperature and stability effects

Bed Material: Sourcing

Crushed vs. Alluvium:

Watershed setting Headwater stream (~8 mi^2 drainage area) Very limited bedload supply is a function of hard basal geology (Grand Ronde basalt) and low relief Bed particles >40 mm are mostly sub-angular Bed particles <40 mm are sub-rounded to rounded and move</p> at flows $< Q_{AA}$ What are the project goals? Maintaining vertical elevation of controls (riffle crests) is paramount to success improving spawning habitat NOT a primary goal Also consider: Ethics of becoming party to floodplain gravel mining Burning fossil fuels to haul longer distance

Bed Material: Q Through Riffles

Threshold for wetting

10/30/08 Surface flow at control ~ 0.56 cfs**

11/4/08 Top-to-bottom surface flow ~ 1.90 cfs**

 * STA 13+20 is one of four controls that has a "plug" of native soil in the subgrade
 ** adult passage and spawning throughout project is comparable to untreated reaches (median spawning flow = 12.6 cfs)

Bed Material: Q Through Riffles (cont'd) Q < 0.5 cfs

- No subgrade "plug" in either control
- Both stations have comparable cross-sectional fill areas
- STA 2+70 constructed under wetter ambient conditions than 15+80 (i.e. more intrusion of native fines into fill during construction)

Bed Material: Observations

Soil plugs in subgrade of riffle crests:

- Do increase residual pool depths
- Are as-yet untested in live-bed conditions
- Riffle porosity inversely correlated with:
 - Amount of tracking by equipment
 - Ambient moisture conditions at time of construction
- Fish passage through constructed riffles
 - Is comparable to ambient conditions
- Macroinvertebrate response very positive and rapid
- Steelhead and resident trout spawning observed
- Dissolved Oxygen
 - Appears to be an issue where known groundwater inputs occur and subsurface flow through riffles

The Thing About Average Gradient...

Medium to high flows: OK because energy line and bed slope are more or less parallel

Low flows: energy line is stepped which (in the absence of further treatment) causes headcutting of riffle toes

Implementing Average Gradient

Mitigate by one or a combination of: Skew thalweg to centerline Harden / coarsen riffle toe Transition slope into head of pool Extend riffle downstream into pool Add a log drop (only done in one place)

Native Material Salvage

Vegetation - VERY effective

Gravels - mostly window-dressing (in Tepee Creek)

Native Material Salvage (cont'd)

STA 14+80

5/19/08

Salvaged sod and shrubs used along bank

Aspen Regeneration

10/30/08

Cattle Exclusion

8/7/07

Microbiotic Recovery

Tepee – Phase 2

7850' reach immediately downstream of IXL reach Monitoring (2003-2009) indicates importance to steelhead (ESA "Threatened") Approximately 2/3 of reach dries-up every year Design 2009-2010 Baseline monitoring 2009-2010 Construction 2010-2011

Existing Conditions

Existing Conditions (cont'd)

Tepee 2 – Monitoring*

- Secondary Production
 - Benthic Spring, Summer, and Fall
 - Utilization (gastric lavage) Summer and Fall
 - Drift Summer and Fall
 - Aerial/Terrestrial Summer and Fall
- **Salmonids**
 - Adults (spawner and redd counts) Spring
 - Juveniles/Residents Summer and Fall
 - Mark-recapture for condition (length & weight)
 - Abundance
 - Migration and survival
- Physical habitat
 - Pools, riffles, glides
 - LWD
- Shallow groundwater year-round
- Surface water
 - upstream and downstream gages year-round
 - wetted channel continuity early fall
- Vegetation/Ground Cover
 - Canopy and ground cover
 - Species composition (point-based)

*conducted cooperatively with YN's Klickitat Monitoring & Evaluation Project

Fall 2009 Mean Benthic Invertebrate Abundance and Biomass Density in Tepee Creek (Phase 2) Treatment and White Creek Control Sections

Metric

Fall 2009 Benthic Invertebrate Relative Abundance Composition by Order in Tepee Creek (Phase 2) Treatment and White Creek Control Sections

Stream

Fall 2009 Benthic Invertebrate Biomass Composition by Order in Tepee Creek Treatment and White Creek Control Sections

Summer 2009 Single-Pass Electroshocking Relative Fish Abundance in IXL Tepee (n=1), Phase II Tepee Treatment Sections(n=4), and White Creek Control Sections (n=4)

For More Information

http://www.ykfp.org/klickitat/KWEP_TepeeIXL.htm

